

Brian Sahm, P.E. Michael Schuster, E.I.T. John Manning, P.E.

Process Energy Optimization

By advanced aeration control

Goals and why we care!

- Aeration makes up about 50-70% of a plants electric bill.
- Normally no more than 2mg/L DO is required to adequately treat and remove ammonia.
- Energy is a hot topic right now and reducing energy consumption is leading the charge.
- Infrastructure needs repair. Save Energy = Extra resources.

Credit: UIC, http://www.erc.uic.edu

Efficiency of Aeration Technologies

Aeration Technology	Oxygen Transfer Efficiency (OTE)
Fine Bubble Diffusers	7.0 - 10.0 lbs. 02/bhp*hr
Coarse Bubble Diffusers	3.0 - 4.0 lbs. O2/bhp*hr
Jet Aeration	3.0 - 4.0 lbs. O2/bhp*hr
Mechanical Aeration	2.0 - 3.5 lbs. O2/bhp*hr

- Mechanical/Jet Aeration
 - Low capital costs
 - Easy install
 - Issues with freezing in cold climate
 Coarse Bubble Diffusers
 - Provides adequate mixing and aeration.
 - May have Lower Maintenance than fine

- Fine Bubble Diffusers
 - Excellent OTE
 - Easy swing zone install when combined with submersible mixers

Data courtesy of Xylem inc.

▶ Will decrease OTE over time

How do we monitor?

- Probes and online analyzers
- DO, Ammonia, Nitrate, ORP, Orthophosphate, pH, MLSS, ...
- Each has a purpose and can help meet our goals.

Dissolved Oxygen (Luminescent)

- Utilize light to identify DO concentration
- Out of the box
- Est. 2 year probe life
- Minimal maintenance and no calibration

Slide 6

BS1 Brian Sahm, 3/13/2019

Ammonia

- ION Selective (ISE) or Gas Sensitive Electrode (GSE)
- ► ISE
 - Less Accurate at low concentrations
 - More calibration and cleaning
- ► GSE
 - More Accurate down to 0mg/L
 - More expensive and complicated implementation
- Using Ammonia to tune DO setpoint

ΡI

ISE Picture Courtesy: YSI

Slide 7

BS1 Brian Sahm, 3/13/2019

Nitrate

► ISE or UV Absorbance

Requires Calibration and membrane replacement

► ISE

Certain lons interfere
 UV Absorbance

 Expensive...
 Can help optimize the de-nitrification zone decreasing DO requirement.
 Raw INF.
 Anaerobic
 Anoxic
 Aerobic
 Milk
 Kas

UV and ISE Picture Courtesy: HACH

Slide 8

BS1 Brian Sahm, 3/13/2019

ORP

- Oxygen Reduction Potential measured in mV
- Measuring the sum of oxidants and reductants in H2O
- Multi Application probe
- Can help optimize Bio P. release and nitrogen removal

Biochemical Reactions and Corresponding ORP Values			
Biochemical Reaction	ORP, mV		
Nitrification	+100 to +350		
cBOD degradation with free molecular oxygen	+50 to +250		
Biological phosphorus removal	+25 to +250		
Denitrification	+50 to -50		
Sulfide (H ₂ S) formation	-50 to -250		
Biological phosphorus release	-100 to -250		
Acid formation (fermentation)	-100 to -225		
Methane production	-175 to -400		

Chart Courtesy: YSI

Slide 9

BS1 Brian Sahm, 3/13/2019

Which Blower is the Right Blower for the Application?

... It Depends!

What Goes into Selecting the Right Blower?

- System Requirements
 - Design Point Air Flow Rates
 - Turndown Requirements
 - System Pressure Range
 - Desired Wire-To-Air
 Efficiency
 - Constant or Variable Head
 - On/Off Cycling
 - Future Expansions
- Client Preferences
 - Cost vs Efficiency
 - Hands-on?
 - Prefer a Certain Blower Type?

- Environmental
 - Ambient Temperature
 - Atmospheric Pressure
 - Humidity
 - Makeup Air Quality
 - Blower Location: Building, Canopy or Direct Sunlight
 - Noise Requirements
 - Space Considerations

Positive Displacement Blowers

- Mature Technology
- 2 different types
 - Rotary Lobe
 - Screw (Hybrid)
- Lower Capital Cost
- Water Environment Association of Texas Great for Lower Air Demands
 - Louder
 - Fixed Air Volume Transfer Rate
 - Air Flow Rate Varies Little with System **Pressure Changes**
 - Linear Flow Curves
 - Typically Modulate Air Flow Rate with VFD
 - Simple Instrumentation
 - Discharge Pressure, Discharge Temperature
 - Inlet Filter Differential Pressure (Monitor Dirty Inlet Filter)

Rotary Lobe Blower, Picture Courtesy: Aerzen USA

Centrifugal Blowers

- Mature Technology
- Larger Footprint
- Louder
- Discharge Air Flow Rate and Pressure are Heavily Dependent on System Pressure
- Bearings Either Greased or Oil
 Bath Lubricated
- Surging Potential
 - All Blowers have a Pressure Ceiling
 - Suction Side Flow Rate Not Enough to Build Up Pressure to Exceed System Pressure
 - Air Flow Reverses from System to Blower
 - Vibration in Blower Occurs and Potential Mechanical Damage

Water Environment Association of Texas

Multi-Stage Centrifugal Blowers

- Very Common
- Good Turndown
- Multiple Stages with Individual Impellers
- Pressure Increase at Each Stage
 - Air Flow Modulation
 - Inlet Valve Throttling
 - Guide Vanes, Inlet and Discharge
 - VFD
- Simple Instrumentation
 - Vibration
 - Bearing temperature
 - Inlet Filter Differential Pressure

Single-Stage Geared Centrifugal Blowers

- Common at Larger Plants
- Single Impeller for Air Compression
- Constant Speed
- Air Modulation Achieved By
 - Variable Inlet Guide Vanes
 - Variable Discharge Diffusers
 - Single or Dual Point Control
- Complex Instrumentation
 - Vibration
 - Temperature
 - Differential Pressure for Vane Adjustment
 - Power

High Speed Turbo Blowers

- Type of Single-Stage Centrifugal Blower
- Higher Capital Cost
- Good Turndown
- Efficient
- Small Footprint
- "Packaged System", Controls by Manufacturer
- Driven by
 - Permamagnet Synchronous Motor (PMAC)
 - Induction Motor (Less Common)

Water Environment Association of Texas

High Speed Turbo Blowers

PMAC Type

- Direct Drive
- High Speed (26,000 RPM)
- 2 Bearing Types
 - No Grease Ports!
- Quiet
- Requires Specialized VFD
- VFD Internal to Unit
- Harmonic Considerations
 - Tuned Harmonic Reactor
- Startup/Shutdown Procedures
 - Planned
 - Power Interruption
- Must Coordinate with Generator(s) upon startup

Water Environment Association of Texas

Blower Operating Ranges

Comparing the Technologies

	Positive Displacement	Multi-Stage Centrifugal	Single-Stage Centrifugal	High Speed Turbo
Wire-To-Air Efficiency (%)*	45-65	50-70	70-80	70-85
Volumetric Air Flow Rate Turndown (%)	50	50-60	45	50
Motor Type	Induction	Induction	Induction	PMAC
Integral Motor Controller?	Large Frame Only	No	No	Yes
Footprint	Small/Medium	Large	Medium	Small
Cooling Options (Heat Rejection)	External	External	External	Internal/ External
Noise	Loud	Loud	Loud	Quiet
Modulation: Inlet Throttling	-	-	Х	-
Modulation: Guide Vanes	-	Х	Х	-
Modulation: VFD	X	Х	-	Х
Surging Possible?	-	Х	Х	Х

Air Demand

- The blowers function is to supply the required air flow rate to the diffuser in the bottom of the basin.
- Minimum and Maximum air flow rates are calculated based on:
 - the number of diffusers in the basin
 - oxygen uptake rate
 - air temperature
 - required change in dissolved oxygen concentration levels
- Pressure is required to overcome:
 - friction losses
 - pipe lengths
 - fittings
 - valves
 - Diffusers
- The valves throughout the system split air flow as required at each zone of the basins.
- The lower the system pressure the better the energy savings.

Most Open Valve

- Concept:
 - Keep one valve fully open to limit pressure drop
 - Adjust pressure on system to keep one valve in "fully open" state
- The goal:
 - Minimizing blower discharge pressure
 - Minimize pressure loss in air distribution system
 - Largest pressure drop is across valves
 - Keeping basin valves as close to open as possible

Valves

- Couple of valve Choices for flow control
 - Linear air flow
 - Iris (centrally closing) valve
 - Non-Linear air flow
 - Butterfly valve
- Sizing flow control value is crucial for stable flow control

Courtesy of EGGER Iris

Air Flow Through Butterfly Valve

Air Flow Through Butterfly Valve

Most Open Valve (MOV) Logic

- Based on Pressure
 - Blower output is determined by header pressure
 - Pressure Transmitter Feedback
 - D.O. readings
 - Advantages
 - Fewer instrumentation required
 - Disadvantages
 - Not the most efficient method of controlling airflow for a desired D.O. level
 - Basin valve actuators tend to "hunt" more

- Based on Flow Control
 - Blower output is determined by calculated air flow demand
 - Sum of flow meter readings compared to calculated air flow demand
 - Advantages
 - Better control resulting in lower power consumption
 - Better control the air flow rate
 - Disadvantages
 - Higher initial costs for instrumentation and motorized valves

Lower Cost MOV Layout

Higher Cost MOV Layout

HMI Operation Considerations

- Simplified system
 - Automatic mode
 - D.O. Control
 - Air Flow Control
 - Service mode (manual)
 - Set Valves to a position
- Simplified graphics
 - Show status of each mode on same screen
- Make process troubleshooting manageable and flexible

Water Environment Association of Texas

Questions??